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Abstract 
Drought diagnosis and forecasting are fundamental issues regarding hydrological         
management in Spain, where recurrent water scarcity periods are normal. Land-surface           
models (LSMs) could provide relevant information for water managers on how drought            
conditions evolve. Here, we explore the usefulness of LSMs driven by atmospheric analyses             
with different resolutions and accuracies in simulating drought and its propagation to            
precipitation, soil moisture and streamflow through the system. We also analyse how            
regional climate models (RCMs) represent meteorological, soil moisture, and hydrological          
drought as well as propagation from precipitation anomalies to soil moisture and streamflow             
anomalies. We perform simulations for the 1980-2014 period with SASER (5 km resolution)             
and LEAFHYDRO (2.5 km resolution), which are forced by the Spanish SAFRAN dataset (at              
5km and 30km resolutions), and the global eartH2Observe datasets at 0.25 degrees            
(including the MSWEP precipitation dataset). We also evaluate three RCMs,          
CNRM-RCSM4, COSMO-CLM, and PROMES. All of the RCM simulations were obtained           
from the Med-CORDEX database and were forced with ERA-Interim. We produce           
standardized indices for precipitation (SPI), soil moisture (SSMI) and streamflow (SSI). The            
results show that the model structure uncertainty remains an important issue in current             
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generation large-scale hydrological simulations based on LSMs and RCMs. This is true for             
both the SSMI and SSI. The differences between the simulated SSMI and SSI by different               
LSMs are large, and the propagation scales for drought regarding both soil moisture and              
streamflow are overly dependent on the model structure. RCMs improve meteorological           
drought representation but uncertainties are high also for SSMI and SSI. For LSMs, forcing              
datasets have an impact on the uncertainty of the results but, in general, this impact is not as                  
large as the uncertainty due to model formulation.  
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1.Introduction 
Drought is an important climatic risk that can be exacerbated by anthropogenic warming             
(Samaniego et al., 2018; Marx et al., 2018) and water management (Wanders and Wada,              
2015). It is the result of complex interactions among processes in the atmosphere, on the               
continental surface, and within human management (Van Loon, 2015; 2016). Drought has            
large social impacts on the society of the Iberian Peninsula due to the scarcity and high                
degree of the utilization of water resources (MMA, 2000). Due to the degree of exposure that                
Spanish society has to drought, it is necessary to improve our knowledge on drought. It is                
also necessary to develop tools that improve our monitoring and early warning capabilities to              
provide water managers with better information. Currently, there is still an insufficient amount             
of knowledge and adequate tools to manage drought effectively in many places.  
 
The most common meteorological drought index is the standardized precipitation index (SPI)            
(McKee et al., 1993). For instance, the drought monitoring product of the AEMET (Agencia              
Estatal de Meteorolog´ıa) is based on the SPI. There are other indices that also include               
reference evapotranspiration (ETo), such as the Palmer Drought Severity Index (PDSI)           
(Palmer, 1965), Reconnaissance Drought Index (RDI) (Tsakiris et al., 2007), Standardized           
Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010; Begueria et al.,           
2014) and Standardized Palmer Drought Index (SPDI) (Ma et al., 2014). Begueria et al.              
(2014) and Vicente-Serrano et al. (2015) studied the sensitivity of drought indices to ETo              
and precipitation and found that each one has a different sensitivity to each variable, which               
must be taken into account for practical applications, specifically if they are related to climate               
change (Sheffield et al., 2012). Similar to the SPI, standardized indices of other variables,              
such as soil moisture or streamflow (Farahmand and AghaKouchak, 2015), can be            
generated. In addition, these can be used to study how drought propagates throughout the              
system by correlating indices at different time scales (Barker et al., 2015).  
 
Standardized soil moisture, if it was widely observed, would be a good drought indicator, as               
it integrates the balance among actual evapotranspiration, effective precipitation and other           
relevant processes and, in addition, it is directly linked to vegetation and is the water source                
that plants use. However, observed data for this variable are rare (Seneviratne et al., 2010).               
AghaKouchak et al. (2015) considers that satellite data, which are not currently used for              
drought monitoring in most basins, offer interesting opportunities to improve early drought            
warning, and Lines et al. (2017) shows that satellite data can be used for the early warning                 
of droughts in the Ebro basin. Concerning remotely sensed soil moisture, recent missions             
(Entekhabi et al., 2010; Kerr et al., 2012; Bindlish et al., 2015) and new high-resolution               
datasets (Escorihuela et al., 2012; Merlin et al., 2013; Molero et al., 2016) are producing               
even more possibilities. 
 
As precipitation deficits propagate through the hydrological system (Wilhite, 2000; Van Loon            
et al., 2012b), drought types are interrelated. Soil moisture drought is slightly out of phase               
with meteorological drought in non-irrigated areas and depends on several factors, such as             
the soil type and capacity to retain water as well as actual evapotranspiration. This is also                
applicable to regions where irrigation is carried out under unusual circumstances, for            
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example, to avoid crop loss. In irrigated areas, soil moisture drought is directly related to the                
availability of irrigation water and therefore depends on hydrological drought. Hydrological           
drought is also affected by meteorological drought but generally at a larger temporal scale              
than soil moisture drought. Therefore, each system component is characterized by its own             
propagation dynamics and memory. 
 
A better understanding of the different types of drought and their propagation processes is              
key to improving current and future drought representation and, thus, drought prediction and             
management tools. 
 
Land-surface models (LSMs) explicitly simulate the water and energy exchanges at the            
interface of the soil with vegetation and the atmosphere. Compared with satellite data, the              
great advantage of these models is that they allow for long-term simulations that extend              
several decades into the past and offer a coherent image of the entire system, including               
variables that are difficult or impossible to observe from space, such as root zone soil               
moisture. LSMs are complex, which limits their use as hydrological models for daily basin              
management, where simple hydrological models offer better results in terms of streamflow            
simulation. However, because they are physical models, LSMs simulate most of the            
processes related to the propagation of drought through the system (Vidal et al., 2010b);              
thus, they are ideal for the study of processes related to drought. Furthermore, LSMs play an                
important role in drought prediction systems (Thober et al., 2015). 
 
LSMs can be useful for drought monitoring and providing information regarding decision            
making (Sheffield and Wood, 2007; 2014). One caveat is that LSMs simulating soil moisture              
and its variability are affected by uncertainties in the forcing data, model structure (Koster et               
al., 2009; Van Loon et al., 2012), parameters (Nearing et al., 2016) and resolution; as a                
consequence, uncertainties are still relevant (Yilmaz and Crow 2013; Wang et al., 2009; Fan              
et al., 2011; Tallaksen and Stahl, 2014) and, thus, the use of ensembles in different models                
is recommended (Mo and Lettenmaier, 2014). The assimilation of satellite soil moisture is             
also a possible way to reduce uncertainty (Lopez et al., 2016), but validation with satellite               
data is not always straightforward (Escorihuela and Quintana-Seguí, 2016). 
 
Regional climate models (RCMs) can help in this task. One of their greatest advantages is               
their adaptation to the regional scale (Feser et al., 2011). This allows us to use regional                
observations and to increase the model’s physical parametrization complexity. Such models           
are suitable for drought analyses performed at the scale of large river basins. Another              
important aspect of RCMs is that these models are used to develop regional climate change               
scenarios via downscaling processes (JiménezGuerrero et al., 2013). In addition, using high            
resolution permits RCMs to be used to perform studies of atmospheric phenomena at a              
small scale. However, drought is difficult to model, as complex interactions between            
atmospheric and continental surface processes must be combined with human action (Van            
Loon et al., 2012a). Furthermore, the relationships among drought types add complexity to             
such modelling.  
 
In this study, we use different land-surface models forced by three forcing datasets at              
different resolutions in order to  
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1. evaluate the usefulness of land-surface models as tools to provide drought           
information (e.g., precipitation, soil moisture and streamflow);  

2. to analyse how RCMs characterize meteorological, soil moisture, and hydrological          
drought; 

3. to analyse how LSMs and RCMs represent the propagation from a precipitation            
anomaly to a soil moisture and streamflow anomaly. 

4. evaluate the involved uncertainties;  
5. detect areas of improvement in land-surface modeling. 

 
This report is based on the results published in two papers produced within this project:               
Barella-Ortiz and Quintana-Seguí (2019) and Quintana-Seguí et al. (2020). 
 

2.Study area 
 

 

Figure 2.1. Relief and main river basins of Spain. The major rivers (Ebro, Duero, Tajo, 
Guadiana and Guadalquivir) are shown with their true borders; other smaller basins have 
been grouped in larger units (North, North-East, East, South-East and Balearic islands) 

 
This study is focused on mainland Spain, whose relief and main basins are depicted in Fig.                
2.1. The main climatic regimes of Spain are oceanic and Mediterranean. However, a             
semiarid climate or even a desert-like climate can be identified in the southeast (Aemet,              
2011). Spain is influenced by both Atlantic (dominated by synoptic-scale frontal systems)            
and Mediterranean meteorology (where mesoscale convective systems are common and          
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often missed by global-scale and low-resolution reanalyses and datasets) which, together           
with complex orography, are the main factors that modulate the climate in this area. Spain               
has an heterogeneous distribution of the annual mean precipitation, with values ranging from             
2000 mm y−1 in the Atlantic margin and Pyrenees to less than 100 mm y−1 in the SE. The                   
main valleys, such as the Ebro basin, are dry due to the shadowing effect of the mountains.                 
Runoff is mainly generated on the relief surrounding the main basins. Spain is known to               
experience frequent droughts (Olcina, 2001). In general, Spain is a semiarid region and is              
not densely vegetated. As a result, soil moisture displays a large annual cycle. From a               
hydrological point of view, there is a strong dependence of the main rivers on the               
precipitation generated in the nearby relief and the resulting runoff. An example is in the               
Ebro Basin and the Pyrenees. Agriculture is located in downstream areas, and the             
infrastructure has been built to store water (dams) and distribute it to irrigated fields (canals).               
As a result, the streamflow is significantly influenced by water management. The impact of              
the anthropic effect must be taken into account. According to Sousa et al. (2011), drought in                
Spain has increased in severity and frequency. Although precipitation does not show            
significant annual trends, observations show a reduction in spring and summer (de Luis et              
al., 2010) as well as an increase in the number of consecutive dry days (Turco and Llasat,                 
2011). Both aspects have an impact on soil moisture drought, which is also affected by an                
increase in annual and seasonal temperatures (del Rio et al., 2011; Kenawy et al., 2013).               
This rise in temperature increases the atmospheric demand (Vicente-Serrano et al., 2014)            
and thus evapotranspiration, reducing the soil’s water content. For hydrological drought, we            
must also consider the advance in the thaw date and a thinning of the blanket of snow in                  
mountainous areas, such as in the Pyrenees (Morán-Tejeda et al., 2013), which affect             
streamflow and increase this type of drought. However, it should be noted that snow melt               
can affect streamflow and thus hydrological drought in different ways depending on its timing              
(Van Loon et al., 2010). 
 

3.Datasets and models 

3.1. Atmospheric forcing datasets for offline simulations 
Off-line land-surface model simulations are performed by driving the LSM with a forcing             
dataset. In this study, our reference dataset is SAFRAN. Furthermore, two other global and              
lower resolution datasets are used: the forcing dataset of the EU-FP7 eartH2Observe project             
and MSWEP. SAFRAN (Durand et al., 1993; 1999) is a meteorological analysis system that              
produces gridded datasets of screen-level meteorological variables by combining the outputs           
of a meteorological model and all available observations using an optimal interpolation            
algorithm (OI) (Gandin, 1966). SAFRAN has been extensively used in France           
(Quintana-Segui et al., 2008; Vidal et al., 2010a) and, more recently, it has also been applied                
in Spain by Quintana-Seguí, et al. (2016, 2017). The Spanish application of SAFRAN uses              
observational data from the Spanish State Meteorological Agency (AEMET) and          
ERA-Interim (Dee et al., 2011) as the first guess. The resulting gridded product has a               
resolution of 5km but, for this study, we have also generated a lower resolution dataset               
(30km). We have labeled these products as SFR (SAFRAN) and SLR (SAFRAN Low             
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Resolution), respectively. The high-resolution SAFRAN data used in this study are available            
in the HyMeX database. The EU-FP7 eartH2Observe project has produced a global            
reanalysis of water resources by performing global off-line simulations based on hydrological            
and land-surface models. These simulations need a global meteorological forcing dataset,           
and the project has created its own based on ERA-Interim (Dee et al., 2011). The first                
version of this reanalysis, which has a resolution of 0.5 degrees, is described in Schellekens               
et al. (2017). eartH2Observe also produced a 0.25 degree forcing dataset, which is the one               
we used here. It is directly derived from the original ERA-Interim 3-hourly data driving              
ERA-Interim/Land (Balsamo et al., 2012). Hereafter, this forcing dataset is labeled as E2O.             
Simulations have also been performed using E2O by substituting its precipitation dataset            
with the MSWEP precipitation dataset (Beck et al., 2017), which optimally merges the             
highest quality data sources available as a function of timescale and location. From now on,               
this dataset is labeled as MSW. 
 

3.2. Land-surface models 
This study is based on simulations performed with three land-surface models: SASER,            
LEAFHYDRO and ORCHIDEE. These incorporate a river routing scheme to transform the            
generated runoff into streamflow. None of the models simulate human processes, such as             
irrigation or dams. LEAFHYDRO includes a dynamic water table coupled via two-way fluxes             
into soil-vegetation and rivers. 
 

3.2.1. SASER 
SASER (SAfran-Surfex-Eaudysee-Rapid) is a hydrometeorological modeling platform based        
on the SURFEX land-surface model. Usually, SASER uses SAFRAN as the forcing dataset             
but, in this paper, it can use any other suitable dataset. SURFEX (SURFace EXternalisee) is               
Météo France’s surface modeling platform (Masson et al. 2013). For natural soils, SURFEX             
uses the ISBA (Interaction Sol-Biosphere-Atmosphère) land surface scheme (Noilhan and          
Planton, 1989; Noilhan and Mahfouf, 1996), which has different versions. In this study, we              
have selected ISBA-3L (Boone et al., 1999) and ISBA-DIF (Boone, 2000; Habets et al.,              
2003). The former considers a simple three-layer description of the soil by means of a force                
restore approach, while the latter uses a more complex multilayer approach. SURFEX lacks             
a routing scheme, which is the reason why SASER uses the RAPID routing model (David et                
al., 2011a, b). The connection between SURFEX and RAPID is made by means of              
Eau-dysee. An important limitation of SASER is that it does not represent groundwater             
processes. In this study, SURFEX has been run on the same grid as SAFRAN, which has a                 
resolution of 5km. Simulations have been performed using ISBA-DIF and ISBA-3L.           
Hereafter, the SURFEX simulations that use ISBA-DIF are labeled as DIF, and the SURFEX              
simulations that use ISBA-3L are labeled as 3L. 
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3.2.2. LEAFHYDRO 
LEAF (Land-Ecosystem-Atmosphere Feedback) is the land-surface component of RAMS         
(Regional Atmosphere Modeling System) (Walko et al., 2000). Several modifications were           
made to LEAF to incorporate groundwater processes, resulting in LEAFHYDRO          
(Miguez-Macho et al., 2007). The water table depth is diagnosed based on the soil moisture               
when it lies within the resolved soil layers. When the depth is deeper, soil columns are                
extended to the dynamic water table below, thereby acting as saturation boundary conditions             
and affecting the soil water fluxes above. There is lateral groundwater flow among adjacent              
cells, leading to divergence from the high ground and convergence with low valleys at              
multiple scales. The water table, once recharged by rain events or fed by lateral flow               
convergence,relaxes into rivers within a grid cell through fluxes between groundwater and            
rivers. These fluxes can be 2-way depending on the hydraulic gradient, representing both             
loosing (i.e., leaking into groundwater) and gaining (i.e., receiving groundwater) streams.           
River discharge, which is fed by surface runoff and groundwater, is routed out to the ocean                
through the channel network using the kinematic wave method. The sea level is set as the                
head boundary condition for groundwater, which allows it to influence coastal drainage.  
 
The LEAFHYDRO simulations for this study were performed on a grid with a 2.5 km               
resolution that is nested in the 5 km SAFRAN grid, which allows each cell in the SAFRAN                 
grid to exactly encompass 4 cells of the LEAFHYDRO grid. Afterwards, the results were              
aggregated to 5 km to facilitate the comparisons with the SASER-based simulations.            
Hereafter, LEAFHYDRO is labeled as LHD. 
 

3.2.3. ORCHIDEE 
The ORCHIDEE LSM (De Rosnay and Polcher, 1998; Krinner et al., 2005) was developed              
by the Institut PierreSimon Laplace (IPSL). It can be run in a stand-alone mode or coupled to                 
the Laboratoire de Météorologie Dynamique (LMD-Z) general circulation model (Li, 1999),           
which was developed by the LMD in Paris. Hydrology is approached by means of a diffusive                
equation with a multilayer scheme. For this, the Fokker–Planck equation is solved            
considering a soil depth of 2 m distributed across 11 layers. The fine resolution is key to                 
better model the interaction between the root profile and the soil moisture distribution at              
different depths as well as infiltration processes. In addition, ORCHIDEE includes sub-grid            
variability in soil moisture. Each grid box is divided into three soil moisture profiles with               
different vegetation distributions, but the same soil texture and structure that are obtained             
from the Zobler map (Post and Zobler, 2000). 
 

3.3. Regional Climate Models 
In this study, drought representation and propagation in three RCMs are analysed. RCM             
simulations were downloaded from the Med-CORDEX database, which is a contribution to            
the Coordinated Regional Climate Downscaling Experiment (CORDEX, Giorgi et al., 2009)           
focusing on the Mediterranean region (Ruti et al., 2016). The criterion used to select the               
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models was that each one used a different surface scheme and therefore represented             
physical processes related to precipitation, soil moisture, and surface and sub-surface runoff            
in different ways. The three RCMs selected are listed in Table 1 and described below:  

● The CNRM-RCSM4 (Sevault et al., 2014; Nabat et al., 2014) is a RCM developed by               
the CNRM. It includes the regional climatic atmospheric model “Aire Limitée           
Adaptation dynamique Développement InterNational” (ALADIN-Climate, Radu et al.,        
2008; Déqué and Somot, 2008; Farda et al., 2010; Colin et al., 2010; Herrmann et               
al., 2011), the three-layer version of the ISBA LSM (Noilhan and Planton, 1989;             
Noilhan and Mahfouf, 1996), the Total Runoff Integrating Pathways (TRIP) routing           
scheme (Decharme et al., 2010), and the regional ocean model NEMOMED8           
(Beuvier et al., 2010). Hereafter, it will be referred to as RS4. 

● The COSMO-CLM (CCLM) model (Rockel et al., 2008) is the climate version of the              
COSMO model developed by the Goethe Universität Frankfurt (GUF). The surface           
scheme is a multilayer version of the Jacobsen and Heise (1982) two-layer model.             
Hereafter, it will be referred to as CL4. 

● The PROMES model (Castro et al., 1993; Sánchez et al., 2004; Domínguez et al.,              
2010) was developed by the Universidad Complutense de Madrid (UCM) and the            
Universidad de Castilla-La Mancha (UCLM). It is coupled to the ORCHIDEE LSM (De             
Rosnay and Polcher, 1998; Krinner et al., 2005). Hereafter, it will be referred to as               
PMS.  

 
All of the RCM simulations are driven by the ECMWF Interim reanalysis (ERA-Interim)             
(Balsamo et al., 2012; Dee et al., 2011), which provides a global atmospheric reanalysis that               
starts in 1979 and is continuously updated in real time. In addition, it improves some               
important issues pertaining to ERA-40, such as the representation of the hydrological cycle.             
This reanalysis is performed by means of a data assimilation system based on a 2006               
release of the ECMWF’s Integrated Forecast System, IFS (Cy31r2), and uses a            
four-dimensional variational analysis (4D-Var) with a 12 h analysis window. The database            
has atmospheric and surface parameters with a temporal scale of 6 and 3 h, respectively.               
The spatial resolution is 80 km, with 60 vertical levels from the surface to 0.1 hPa 
 
ERA-Interim is a well-known atmospheric forcing used in a large number of studies. For              
instance, Belo-Pereira et al. (2011) and Quintana-Seguí et al. (2017) have validated it across              
the Iberian Peninsula. However, biases in this type of forcing have a negative effect on LSM                
simulations, which can be corrected (Ngo-Duc et al., 2005; Weedon et al., 2011). 
 
In this study, ERA-Interim is the driving data of the three RCMs analysed. In addition, it is                 
also used to force LSM simulations used as a reference in the soil moisture drought               
analysis. Hereafter, it will be referred to as ERA. 
 
For the hydrological drought analysis, modelled and observed streamflow data were used as             
references. Two issues should be stressed before explaining these datasets. The first is that              
the Med-CORDEX database does not provide simulated streamflow for any of the three             
RCMs, which would be the variable ideally suited for this study. In the absence of such data,                 
it was decided to use modelled total runoff (hereafter referred to as runoff) corresponding to               
the subbasins defined by a selection of gauging stations. We believe that this approximation              
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is valid because we use a coarse time step, with a larger time propagation than the flow                 
propagation. In fact, other studies use this variable to analyse hydrological drought (Vu et al.,               
2015; Meresa et al., 2016). 

3.4. Streamflow observations 
Daily streamflow data were obtained from the MAPAMA database. To obtain monthly time             
series with few gaps, we selected all stations that had at least 95% of the daily data during                  
the period of study.  
 
Due to the high degree of human influence on streamflow in the area of study, an estimate of                  
the monthly naturalized flow was necessary in order to validate our LSM simulations, which              
do not simulate any water management infrastructure. SIMPA (Estrela and Quintas, 1996;            
Ruiz 1999) is a monthly, conceptual, distributed hydrological model used by MAPAMA and             
the authorities of most basins, which provide feedback during its development. We believe             
that it is currently the best reference dataset for naturalized flow for Spain. These data were                
provided to us by MAPAMA. Its streamflow time series ends in summer 2006. Hereafter,              
SIMPA is also referred to as SMP. 
 

4.Methodology 

4.1. LSM simulations 
The offline LSM simulations performed in this study encompass the period 1980-2013;            
however, all calculations based on streamflow have been performed in the subperiod            
(1982-2005). This was done for two reasons: (1) the SMP time series provided by the               
MAPAMA ends in summer 2006; and (2) in the LHD simulations, due to the spin-up process,                
the simulated streamflow was not realistic until 1982.  
 
To compare the simulated soil moisture among models, soil was divided into two layers: the               
root zone and deeper soil zone. SURFEX defines the root zone and deeper soil zone               
coherently in both 3L and DIF. To do the same in LHD, we used the root zone and total soil                    
depth of 3L and then extracted the soil moisture for these same layers in LHD. 
 

4.2. Drought quantification 

4.2.1. Calculation of drought indices 
We have calculated drought indices following the SPI. This index is calculated using monthly              
data or, alternatively, a time series of the accumulated precipitation for the previous n              
months, where n represents the scale of the index. A similar operation can be done for soil                 
moisture (SSMI) and streamflow (SSI). We use a nonparametric methodology, which can be             
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applied to different climatic variables, including precipitation, soil moisture and relative           
humidity, without having to assume representative parametric distributions (Farahmand and          
AghaKouchak 2015). 
 

4.2.2. Drought propagation 
The methodology we used to study drought propagation is inspired by Barker et al. (2015):               
(1) the standardize soil moisture index (SSMI) is calculated with a temporal accumulation of              
1 month, making the SSMI equivalent to SSMI-1; (2) for precipitation, SPI-n is computed for               
n in [1, 2, ..., 24]; and (3) finally, for any given grid point, the nx scale maximizing the                   
Pearson correlation coefficient between SPI-n and SSMI is found. The resulting nx can be              
interpreted as the scale at which drought propagates from precipitation anomalies to soil             
moisture anomalies. For streamflow, the methodology is mostly the same, with the difference             
being that the SPI is calculated with the areal mean of the basin precipitation corresponding               
to the gauging station of the studied streamflow. 
 

4.2.3. Comparison and validation metrics. 
To compare standardized indices of the same variable (i.e. soil moisture) corresponding to             
two different products or to a product and the observations we have used the root mean                
square difference (RMSD) and Pearson Correlation coefficient (r). 
 
The streamflow validation was carried out using the Kling– Gupta efficiency (KGE) (Gupta et              
al., 2009). The optimal KGE value is 1, whereas negative values are a sign of a model’s bad                  
performance. 
 

5.Results 

5.1. Meteorological drought 

5.1.1. Mean annual precipitation 
 
Fig. 5.1.1.1 shows the mean annual precipitation in the area of study, as reproduced by the                
forcing datasets used in this study. SFR (a), our reference dataset, captures the complexity              
of the spatial structure of precipitation in Spain. The most important factors determining its              
distribution are relief (increased precipitation in the main mountain ranges due to orographic             
lift enhancement and a decrease in inland valleys, due to rain shadowing effect) and the               
proximity to the Atlantic ocean, upwind from the prevailing westerly flow. SLR (c) is a lower                
resolution version (30km) of SFR, with a smoother spatial structure retaining nonetheless its             
main patterns and features. The difference between both datasets (b) shows the error due to               
resolution and, as expected, is largest on the relief. SLR is similar in resolution to E2O and                 
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MSW, thereby allowing for a fairer comparison than SFR. E2O (d) resolves less features in               
the precipitation pattern than SLR (and hence, SFR), and presents a strong negative bias (e)               
in most of the area of study. The exceptions are concentrated in the inland valleys of the                 
Ebro and the Duero basins, where precipitation is overestimated due to the            
misrepresentation of the shadowing effect of the relief by E2O. MSW (f) , also overestimates               
precipitation (f), but to a lesser degree than E2O, which attests to the incorporation of other                
sources of precipitation information (from satellite, rain gauges, etc.) representing an           
important improvement. Notwithstanding, MSW still overestimates precipitation in the Ebro          
valley (but not in the Duero) and also in a small area of the South East. These results are in                    
accordance with those found by Belo-Pereira et al (2011), who validated the precipitation of              
different global datasets in the Iberian peninsula.  
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Fig. 5.1.1.1. Mean annual precipitation of the forcing datasets in the area of study for the 
period 1980-2013 from the four products used in this study. Panel (b) shows the relief at 
the resolution of the SFR grid (5 km) and the main river basins (small ones have been 
aggregated). All products have been regridded to the SFR grid, which is the one used in 
the LSM simulations. The first column shows means and the second column, differences 
using SLR as reference. 
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Fig 5.1.1.2. Mean annual precipitation of the RCMs across the study area from 1989 to 
2008: ERA (a), SLR (b), RS4 (d), CL4 (g), and PMS (j). Panel (c) shows the difference 
between ERA and SLR mean annual precipitation; panels (e), (h), and (k) show the 
difference between the RCMs and ERA mean annual precipitation; and panels (f), (i), and 
(l) show the difference between the RCMs and SLR mean annual precipitation. 

 

15 



 

  

 

Figure 5.1.1.2. shows the mean annual precipitation of ERA and SLR as well as the               
difference in mean annual precipitation between them. Panels d–l show the RCMs’ mean             
annual precipitation and their difference with respect to ERA (Panels e, h and k) and SLR                
(Panels f, i, l). All products show greater precipitation in the northwestern and northern              
regions of the peninsula (exceeding 2000 mm yr−1 ) as well as over mountainous chains.               
The products also show that precipitation is lower along the main basin valleys (due to the                
orographic shadow effect) and minimal over the southeast, which is the driest region of the               
peninsula. For instance, precipitation across some areas of this region does not exceed 100              
mm yr−1 . The RCMs’ mean precipitation spatial structures show similar behaviour to those              
from ERA and SLR. The fact that precipitation is high over mountainous chains indicates the               
strong influence of relief, which is key in the way water from precipitation is distributed. In                
fact, we would like to stress SLR’s significant contrast in relief due to its use of data from                  
AEMET’s dense pluviometric network. This evidence indicates the complex spatial structure           
of precipitation in Spain. 
 
Regarding the RCMs, RS4 and PMS show the greatest similarity and the highest contrast              
with CL4. When compared to ERA, both RCMs have higher precipitation, especially in             
mountainous areas. Modelled precipitation tends to overestimate precipitation compared         
with observations and ERA (Sylla et al., 2010). This reflects the addition of water in the form                 
of precipitation, improving the RCMs’ spatial distribution of precipitation with respect to the             
driving data. However, when RS4 and PMS are compared to SLR, precipitation is             
underestimated over some areas (valleys and the coastline). It must be noted that SAFRAN              
is mainly based on rain gauge information. The CL4 model is a different matter, as it                
underestimates precipitation for almost all of Spain when compared with ERA and SLR. 

5.1.2. Precipitation Drought Indices 
In the previous section we found something that was expected, as it is well known that global                 
products underestimate precipitation, especially on the relief. However, in the context of this             
study, it is more interesting to study the variability of the products, that is, their capacity to                 
reproduce drought. This is the objective of this section. Figure 5.1.2.1 shows time series of               
SPI-12 computed from area averaged precipitation over Spain. SPI-12 from SFR, our            
reference dataset (Panel a) indicates that several drought events have occurred during the             
period, the most severe in 2004-2005. These drought spells coincide with those detected, for              
instance, by Belo-Pereira et al (2011). Panels (b) and (c) show the same index estimated               
from E2O and MSW data, respectively (we should not forget that MSW integrates rain gauge               
data, when comparing these two products). At first sight, the time series look similar, with the                
main drought periods well detected by the different products. However, there are relevant             
differences in both drought duration and intensity. This is better seen in panels (e) and (f),                
which depict the differences between E2O and SFR and MSW and SFR, respectively The              
differences between E2O and SFR present a noticeable trend, which can affect drought             
studies, as it modifies the intensity of droughts with time. To determine whether this trend               
develops from the original ERA-Interim data (ERA from now on), on which E2O is based, or                
it is due to corrections applied by the algorithms used to produce E2O, panel (d) shows the                 
difference between ERA and SFR. The plot reveals that the problem is mainly inherited from               
ERA. For MSW (f) the differences with SFR are smaller, which means that the MSW               
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algorithm effectively combines diverse sources of data, including ERA, other reanalyses,           
satellite and rain gauge observations, in order to better estimate real precipitation. However,             
even when the differences are reduced in this case, they remain relevant. An analysis of the                
monthly maps of drought for the three products (not shown) reveals that E2O and MSW are                
able to reproduce the main drought spatial patterns, but miss the finer details. MSW is               
nevertheless an important improvement compared with E2O. If we study the time evolution             
of the spatial correlation (not shown) we see that MSW has better correlations and less               
variability in time (more robustness) than E2O, which sometimes completely misses the            
spatial structure of drought, with very low correlations that approach zero for some months.              
Looking at the evolution of the area under drought (not shown) the errors of SLR are                
minimal, but still reaching 6% for some months. MSW does not present a systematic bias,               
but it overestimates the area under drought in the first part of the 1990s and it                
underestimates it from year 2006 on. E2O shows the trend seen before (increasing drought              
with time). In addition, we have also studied the temporal correlation of the drought indices               
for each grid point. As the most interesting result, this comparison denotes the improvement              
that MSW represents with respect to E2O. E2O has lower correlations in the Ebro basin and                
the Mediterranean coast, which is a known limitation of global products in the Iberian              
Peninsula (Belo-Pereira et al., 2011; Andrade and Belo-Pereira, 2015). The incorporation of            
satellite rainfall data into MSW ameliorates the detection of the small scale structures that              
produce precipitation in the Mediterranean area. SLR has high temporal correlations with            
SFR, as expected.   
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Figure 5.1.2.1. SPI-12 time series. First row: SPI-12 calculated with the spatially 
aggregated time series of precipitation of Spain as reproduced by SFR, E2O and MSW. 
Second row: Difference between the aggregated SPI-12 time series calculated with ERA, 
MSE and E2O compared to SFR.  

 
Figure 5.1.2.2. shows the time series of the SPI-12 calculated using mainland Spain’s             
average precipitation as reproduced by ERA (panel a), SLR (panel b), and the RCMs              
(panels d, g, and j). The computation is performed for a time accumulation of 12 months.                
ERA and SLR show several drought spells which occurred during the 20 years that comprise               
the study period (the most severe occurred in 2005–2006). These spells coincide with those              
found by Belo-Pereira et al. (2011) and also appear in the RCMs’ SPI time series plots.                
Therefore, RCMs are capable of reproducing these spells. However, differences in duration            
and severity can be observed. For instance, the duration of the spell that occurred in 1992                
and 1993 was 21 and 22 months according to CL4 and PMS, respectively. However, it               
lasted 19 and 17 months according to SLR and ERA, respectively. Another interesting result              
is found in the spell that took place in 2002. CL4’s mean severity is similar to that of ERA.                   
However, the mean severity of both RS4 and PMS is in better agreement with that of SLR                 
than with their driving data. Other information that can be extracted from these results is the                
timing of drought between the RCMs and their driving data and reference data. For example,               
the RCMs, ERA, and SLR agree that the spell that occurred between 1994 and 1995 started                
in May 1994. RS4, CL4, ERA, and SLR agree that it ended in December 1995, but the PMS                  
model indicates the end of the spell occurred a month before the rest (November 1995). The                
spell between 2004 and 2006 started in November 2004 according to SLR, ERA, and PMS,               
which show similar durations (ERA shows 23 months, and SLR and CL4 show 24 months).               
However, it started in January 2005 according to RS4 and CL4 and had a longer duration:                
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27 (RS4) and 25 (CL4) months. In a previous study, a spurious trend in ERA was detected                 
(QuintanaSeguí et al., 2019). This can be observed in Panel d, where the difference              
between the SPI-12 time series of ERA and SLR is represented. However, the differences              
between the RCMs and SLR SPI-12 time series show that these models do not drag this                
trend. 
 
To deepen the analysis of the spatial structure of meteorological drought, monthly SPI-12             
maps were computed. The comparison of these structures, as shown by the RCMs, with              
those of their driving data and the reference dataset, provides more information about             
drought representation by RCMs. For instance, the temporal evolution of the spatial            
correlation of the SPI-12 maps of the RCMs with ERA and SLR (not shown) indicates the                
similarity between the RCMs and their driving data and reality (as approximated by SLR),              
respectively. In the first case, RS4 most resembles ERA. Despite not showing the highest              
correlations, it has less variability and is therefore more robust. The correlations of CL4 and               
PMS with ERA are more variable, reaching values close to zero in some months, in which                
the spatial structure of drought is not captured. In the second case, RCMs show worse               
correlation with SLR than with ERA, as expected. It should be stressed that RS4 also               
displays better correlations than the other RCMs when these are compared with SLR. Thus,              
out of the three RCMs studied, RS4 deviates less from the driving data and most resembles                
the reference. The correlation between ERA and SLR shows some variability in its temporal              
evolution, especially since 2000. This is likely due to the effect of the spurious trend               
identified previously. To complement the spatial structure analysis, we look at the difference             
in the percentage of the area affected by drought (SPI-12 < −1) between the RCMs and ERA                 
and SLR (not shown). The differences are generally under 25 %. In general, the RCMs show                
similar behaviour during a drought spell, meaning that they all overestimate or underestimate             
the affected area. For example, all three underestimate the area in 1994, overestimate it in               
1995, and underestimate it in 1996. The difference relates to the degree to which they               
deviate. On the one hand, in 1995, RS4 overestimates the percentage of area affected by               
drought by 20 %, CL4 by approximately 15 %, and PMS by less than 10 %. On the other                   
hand, in 1996, PMS underestimates this percentage by more than 30 %, while RS4 and CL4                
underestimate it by 10 %. Another example is how the RCMs overestimate the area in 2000                
and how they underestimate it between 2001 and 2003. RS4 is the RCM that shows the                
lowest percentage difference, which is consistent with our previous results. 
  

19 



 

  

 

 

 

Figure 5.1.2.2. SPI-12 time series calculated with the spatially averaged time series of 
mainland Spain precipitation, as reproduced by ERA (a), SLR (b), RS4 (d), CL4 (g), and 
PMS (j). Panel (c) shows the difference between ERA and SLR SPI-12; panels (e), (h), 
and (k) show the difference between the RCMs and ERA SPI-12; and panels (f), (i), and (l) 
show the difference between the RCMs and SLR SPI-12. 

 
 

20 



 

  

 

5.2. Soil Moisture Drought 

5.2.1. Soil Moisture Drought Indices 
 
In this section, we quantify the model result differences and assess the intermodel             
consistency for soil moisture drought. Table 5.2.1.1. shows the root mean square difference             
(RMSD) and Pearson correlation (r) calculated by comparing all simulations with each other.             
These values synthesize both the spatial and temporal aspects of the differences, as the              
comparisons include all data points (i.e., all grid points for all time steps). The table contains                
four subtables. The first row of subtables corresponds to the root zone, and the second row                
corresponds to the deep soil. Different color scales have been used for each score (RMSD               
and r), but the same color scale (where greener is better) is used for each score for both soil                   
layers. 
 
 

 

Table 5.2.1.1. Comparison of the SSMI data produced by all simulations. 

 
Two scores have been computed, the root mean square difference (RMSD) and the Pearson              
correlation (r), for the root zone SSMI and deep soil SSMI 
 
The disparity between simulations with the same model but different forcings is larger than              
that between simulations with the same forcing but different models, which implies that the              
forcing dataset plays an important role. For example, in simulations forced by SFR, the              
largest RMSD for the root zone soil moisture is 0.55, and the lowest correlation is 0.84 (both                 
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correspond to SFR-DIF vs. SFR-LHD). On the other hand, for all simulations using DIF, the               
largest RMSD is 0.61, and the lowest correlation is 0.80 (E2O-DIF vs. SFR-DIF). This result               
is identical if we compare E2O-LHD with SFR-LHD. For the root zone soil moisture, the               
smallest difference between two simulations that use different forcing datasets and models is             
between E2O-DIF and SFR-3L (RMSD = 0.42 and r = 0.9). The largest difference is between                
E2O-LHD and SFR-DIF (RMSD = 0.74 and r = 0.71). To put these results into context, a                 
RMSD of 0.74 is almost 3 4 of a standard deviation, which means that the drought status of                  
a grid point at a given time probably changes category. The trend found in E2O increases                
the differences between simulations. If E2O is removed from the comparison, the            
simulations with the largest differences are MSW-LHD and SFR-DIF (RMSD = 0.65, r =              
0.78), which are still high values. For deep soil moisture, the differences are larger; the most                
divergent simulations (taking E2O out of the comparison) are MSW-DIF and SFR-3L (RMSD             
= 0.87 and r = 0.6). When including E2O, the largest difference is between E2O-DIF and                
SFR-3L (RMSD = 0.96 and r = 0.51). This analysis shows that drought studies performed in                
the same area with different models and forcing datasets should be compared carefully, as              
the uncertainties are still high. This is something that, for example, has also been found in a                 
climate change setting by Marx et al. (2018). 

 
Table 5.2.1.2. Comparison of the SSMI data from the RCM and LSM simulations. The upper               
block shows the RMSD, and the lower block shows the Pearson correlation (r). The colour               
scale is a gradient from blue (largest similarity between models) to red (lowest similarity              
between models) via white. 
 
We perform the same process for the RCMs. The RMSD and the Pearson correlation              
coefficient (r) are calculated by comparing the SSMI from the RCM simulations and the LSM               
simulations. All mesh points and time steps are included in the comparison. Therefore, the              
results provide information regarding spatial and temporal drought structures. It should be            
noted that biases are not calculated because they are zero by construction (the mean of the                
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SSMI is zero). The results are shown in Table 5.2.1.2, the upper block of the table                
corresponds to the RMSD and the lower block corresponds to the r calculations. A colour               
scale consisting of a blue (largest similarity between models) to red (lowest similarity             
between models) gradient via white has been included to facilitate reading. 
 
To put these results into context, we will consider the drought classification according to the               
SPI, which is divided into eight categories from “extremely wet” (SPI = 2) to “extreme               
drought” (SPI = −2). A RMSD equal to 1 is a standard deviation of the index studied (in this                   
case, the SSMI). In the framework of drought analysis, a value higher than 0.5 would imply a                 
change in category (for example, from “slightly wet” to “moderately dry”). Therefore, the             
upper block of Table 3 shows that there is a change in drought category when comparing the                 
RCMs with the reference offline LSM simulations, as the RMSD is above 0.5 (fourth to sixth                
columns). In addition, the three RCMs compared among them also represent soil moisture             
droughts of different categories (second and third columns), as expected. 
 
Going into detail, we can observe some similarity between the RS4 simulation, which uses              
the ISBA surface scheme, and the ISB simulations. Compared with ISB, RS4 reproduces             
drought better than the other RCMs used in this study. However, this does not occur when                
the PMS and ORC simulations are compared, despite using the same surface scheme. In              
fact, RS4 and CL4 are, in general, more similar to ORC than PMS, according to the                
statistics. The SSMI comparison of the RCMs with both ISB simulations (fifth column vs.              
sixth column) shows very similar statistics. Discrepancies could be explained by the RCMs’             
land–atmosphere coupling and forcing effects. 
 

5.2.2. Drought Propagation to Soil Moisture 
If the drought status is important for a water manager, the time scales of drought               
propagation (from precipitation to soil moisture) are perhaps even more important, as their             
knowledge can be a tool for the forecasting of the soil moisture status in places where                
drought dynamics are relatively slow, which could benefit early warning systems. As stated             
in Section 4.2.2 we perform this analysis by finding the nx scale maximizing the correlation               
between SPI-n and SSMI. 
 
Figure 5.2.2.1 shows maps of nx for the root-zone soil moisture. For instance, by taking               
SFR-DIF (a) and SFR-LHD (b), it is apparent that the spatial pattern of nx is significantly                
different for each model. The spatial structure in DIF is overly homogeneous, which means              
that for this model, the SSMI correlates better with the SPI at scales of 2 months for almost                  
all of the study area. In contrast, the LHD presents a richer pattern, with scales that extend                 
from 3 to 12 months, as the dynamics are slower towards the south and faster towards the                 
northwest. 3L is similar to DIF but with a NW-SE gradient that extends from scales of 1                 
month in the NW to 9 months in the SE. The conclusion of this first comparison is that the                   
model formulations have a strong influence on the temporal scale at which the variability of               
precipitation affects the variability in soil moisture; thus, different models yield significantly            
different results. Another important question is how meteorological forcing affects nx . The             
first column in Fig. 5.2.2.1 (panels a, d, f, and h), showing the nx results for all simulations                  
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that use the DIF model, shows that the pattern is largely invariant. E2O-DIF and MSW-DIF               
have an area where nx is one month longer than that in SFR-DIF, but this difference is                 
significantly lower than that from the changing model. The results for the LHD model (second               
column; panels b, e and g) indicate that the spatial patterns of nx for different forcings are                 
more divergent than those in the case of DIF but still to a lesser degree than those of a                   
different model. This suggests that, for some models, the forcing dataset has an impact on               
how precipitation variability propagates to soil moisture; however, this impact is still not as              
high as that of the model formulation itself. 
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Figure 5.2.2.1. Scale nx that maximizes the correlation between SPI-n and root-zone 
SSMI for different forcing and model combinations. 
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A similar analysis can be performed for the deeper soil zone (below the root zone). In this                 
case, (figures not shown), nx is higher for all models except 3L, indicating that soil moisture                
variability in the deeper soil is generally related to more persistent precipitation anomalies,             
which is expected. For DIF, nx is much larger in the deep soil than in the root zone when                   
compared with the LHD results, where there is much less variation. This occurs perhaps              
because of the relatively fine resolution of the soil columns in the top 4 m of the soil and the                    
coupling with the water table in this model. 
 
These comparisons show that LSMs with different structures produce different drought           
dynamics in soil moisture. Unfortunately, we do not know what the reality is due to the lack                 
of observations, but these large differences reveal that progress is needed in order to, first,               
improve the observational coverage of the soil moisture (particularly the deeper layers) and,             
second, bring models closer to the real behavior. Furthermore, the forcing dataset also             
introduces its own uncertainty. 
 
 

 

Figure 5.2.2.2 The nx timescale maximizing the correlation between the SPI-nx and 
SSMI-1 for the RCM and LSM simulations. Portugal and regions from the study area 
(mainland Spain) whose values are not within the colour scale are represented in white. 
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For the RCMs we apply the same procedure. nx maps from Fig. 5.2.2.2 indicates the scale                
in months at which the correlation between the SSMI-1 and SPI-n is maximal and thus the                
temporal scale at which meteorological drought propagates to soil moisture drought. Figure            
5.2.2.2.a–c shows RCM maps, whereas Fig. 5.2.2.2.d–f shows ISB and ORC LSM            
(reference data) maps. The scale ranges from 0 to 28 months, with the dynamics of the                
model in regions with a yellowish tone being slower than those in regions with a bluish tone. 
 
Panels a-c show that the RCMs provide different results even though they use the same               
driving data, which indicates the predominance of model structure with respect to the driving              
data. This becomes more evident when a RCM is compared to the LSM that has the same                 
surface scheme. For example, the RS4 and ISB (Panels a, d, and e) maps show similar                
spatial patterns. These are very homogeneous, with scales that range from 1 to 4 months,               
implying that ISB reacts very quickly to precipitation. Another example is the comparison             
between PMS and ORC (Panels c and f). Both models show greater heterogeneity than ISB,               
with scales from 1 to 20 (PMS) and 24 (ORC) months, highlighting the role of the continental                 
surface. Finally, the CL4 (Panel b) behaviour is quite homogeneous. The peninsula is             
divided into two areas, one over the northwest, where the nx scale ranges between 6 and 12                 
months, and a larger one with a fixed value of 20 months. It is interesting to note the similar                   
spatial structures from the ERA-CL4 and ERA-ISB maps (Panels b and e), indicating that              
soil moisture drought propagation by CL4 drags the same spatial structures as its driving              
data 
 

5.3. Hydrological Drought 

5.3.1. Hydrological Drought Indices 
Here, we evaluate the ability of the models to simulate streamflow drought (SSI). In this               
case, we compare the ability directly with that of the SMP-SMP, assuming that it provides a                
good estimate of natural flows. Figure 5.3.1.1. shows the RMSDs for the different             
simulations, with lower values indicating higher skills. SFR-DIF generally has the smallest            
RMSDs, ranging from 0.6 to 0.8, with maximum values between 0.8 and 1.0 in an area at the                  
headwaters of the Tajo, Guadiana, and Júcar, which also includes the southernmost stations             
in the Ebro river basin. SFR-3L presents similar results, whereas the SFR-LHD exhibits             
larger RMSDs at most stations, with a maximum value of approximately 1.2. The             
aforementioned high baseflows in this model are likely the cause of these large RMSDs,              
which impact its capability to reproduce drought status. To put all of these results in the                
context of drought studies, an RMSD value of 1 represents one standard deviation of the               
index and, thus, even errors of 0.6, which is the best case for all simulations and may                 
change the drought status of a given monthly flow (i.e., from normal to drought status).               
Concerning the effect of forcing, the maps show that the MSW has similar results to the                
SFR, while E2O, in general, yields somewhat larger RMSDs 
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Figure 5.3.1.1. RMSD of the SSI (compared to the SMP-SMP) for the simulations 
performed in this study 
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Figure 5.3.1.2. Pearson correlation (r) of the SSI (compared to the SMP-SMP) for the 
simulations performed in this study 
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Figure 5.3.1.2 depicts the Pearson correlation coefficient (r) of the same simulations, with             
higher values representing better performances. The SFR-DIF is, again, the simulation with            
the best scores, followed by SFR-3L and SFR-LHD. In the last case, the correlations in               
some rivers are extremely low, especially in the southern half of the area of study, where                
summer flows are minimal and, thus, negatively affected by the high baseflow bias in the               
LHD. The impact of changing the forcing datasets remains low, as it was before 
 
The conclusion of this comparison is that, in terms of the SSI, model formulation is the most                 
important uncertainty source compared to the forcing dataset. 
 

5.3.2. Propagation of drought to runoff and streamflow 
Finally, we evaluate how the models simulate drought propagation from precipitation to            
streamflow. We have studied the correlation between the SPI-n and SSI for different values              
of n (not shown). We found that, in general, the SMP-SMP has a behavior closer to the DIF                  
and 3L behaviors compared with the observations in many basins. This means that even a               
well-tested hydrological model, such as the SMP, has difficulties producing the right            
correlations between the SPI-n and SSI. For its part, the LHD presents a different behavior               
due to the connection of rivers to the groundwater in this model. In all cases, the simulations                 
are closer to the other simulations when using the same model and not the same forcing                
dataset, which indicates that model formulation largely determines the drought propagation           
behavior, and the forcing dataset has a reduced impact. 
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Figure 5.3.2.1. nx scale, in months, of the SPI-n, which better correlates with the SSI. The 
red dots indicate scales longer than 12 months 

 
We now generalize for the whole study area. Figure 5.3.2.1. shows the scale nx , in months,                 
of the SPI-n that better correlates with the SSI. The SFR-OBS (b) compares basin              
precipitation from the SFR and observed SSI at each station. There are many red dots in                
areas where the flow is highly intervened by water management, but other reasons cannot              
be excluded, such as karsts or groundwater influence, because some red dots correspond to              
rivers in the natural regime. The SMP-SMP (a) is the result of a well-tested hydrological               
model; however, we must keep in mind that it is not the ground truth, and it will not be able to                     
correctly simulate the presence of large karst systems or other complex geological features;             
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therefore, it does not have a perfect skill score, as discussed previously. The SMP-SMP              
shows some coherent geographical patterns, with low nx values (1-3 months) in the north in               
most of the Ebro and in some areas of the Duero and Tajo basins. The highest values                 
(reaching 1 year) are found in the Sistema Iberico mountain range, separating the Ebro and               
Duero basins. Moderate values occur in the SE and some areas of the Duero basin. With                
regard to the other models, The DIF and 3L present the lowest nx , as in the case of the                    
root-zone soil moisture, indicating the generally fast response of rivers to precipitation            
deficits. The comparison with the SMP shows that these nx values are too low and too                
homogeneous in space. Forcing the DIF with the SLR instead of the SFR, MSW or E2O                
does not change the results significantly, suggesting that those results are mostly dependent             
on model formulation. Indeed, a model with a different approach, such as the LHD, presents               
a divergent behavior, with high values of nx in many of the studied basins, which is likely due                  
to the role of groundwater buffering the streamflow response to drought. Furthermore, it is              
more sensitive to forcing than the other models, as was the case for soil moisture.  
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Figure 5.3.2.2. Pearson correlation between the SPI-n and SSI when n is the scale that               
maximizes the correlation (nx ) 
 
Figure 5.3.2.2. shows the Pearson correlation between the SPI-n and SSI when n = nx . If                 
we compare the SFR-OBS with the SMP-SMP, we see that in the real world, which is                
complex and influenced by water management, the correlations between the SPI-nx and SSI             
are lower than those in the non-human influenced and simplified world of a model. This               
result suggests that, in reality, there are many more factors driving streamflow variability, as              
defined by the SSI, than just precipitation. As expected, the DIF and 3L streamflow              
variabilities are too related to precipitation (i.e., high correlation), as they do not simulate              
management or groundwater processes; however, they are quite comparable to the           
SMP-SMP. The LHD, on the contrary, has much lower correlations, which means that the              
streamflow variability in this case is driven by other factors, such as groundwater processes. 
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Table 5.3.2.1. The nx timescale maximizing the correlation between the SPI-nx and (i) SRI-1              
(RCMs) and (ii) SSI-1 (SMP and OBS). Scales longer than 12 months are marked in bold. A                 
colour scale has been included to indicate the strength of the correlations between the              
SPI-nx and (i) SRI-1 and (ii) SSI-1 following the guide proposed by Evans (1996). The               
correlation ranges and the associated colours are as follows: (i) very strong, 0.80–1.0             
(yellow); (ii) strong, 0.60–0.79 (blue); (iii) moderate, 0.40-0.59 (white); and (iv) weak,            
0.20–0.39 (red). 
 
Table Table 5.3.2.1. shows the nx values that indicate the monthly scale at which the               
correlation between the SPI-nx and (i) SRI-1 (RCMs) and (ii) SSI-1 (SMP and OBS) is               
maximal. This can be interpreted as the temporal scale at which meteorological drought             
propagates to hydrological drought. To better understand these results and the extent to             
which they reflect the propagation of a precipitation anomaly to a streamflow anomaly, a              
colour scale is included to indicate the strength of the correlation. It follows the guideline               
given by Evans (1996): very strong (yellow), strong (blue), moderate (white), and weak (red).  
 
In contrast to what we saw previously RS4 and PMS show very similar scales: means of 3                 
months for stations in the Duero Basin and 2 months (RS4) and 1 month (PMS) for stations                 
in the Ebro Basin. However, CL4 provides larger scales, from 9 to 13 months (Duero Basin)                
and from 1 to 8 months (Ebro Basin). The difference in scales shown by the RCMs is an                  
indicator of the relevance of model structure in drought propagation.  
 
The RCMs and SMP show higher nx values and thus slower dynamics in the Duero Basin                
than in the Ebro Basin. This is in agreement with the nx values obtained using the SSI-1                 
computed with OBS, in which the mean nx values are 9 (Duero) and 4 (Ebro). Analysing                
these results, we can establish that the RS4 and PMS runoff responds quickly to              
precipitation anomalies. When compared to SMP and OBS, the monthly scales provided are             
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in good agreement in the Ebro Basin but are too low in the Duero Basin. In contrast, CL4                  
shows larger scales and behaves inversely to RS4 and PMS, as it is in better agreement                
with SMP and OBS in the Duero Basin. 
 
Focusing on the strength of the correlations, RS4 (coupled to ISB) shows strong positive              
correlations at six of the eight stations analysed, indicating that precipitation has a significant              
role in streamflow variability. However, the correlations of CL4 and PMS with the SPI-nx are               
moderate (even weak for station number 9025), which implies that there are also other              
factors driving this variability. 
 

6.Discussion 
 
In this study, we have shown that, despite their limitations, global forcing datasets can be               
useful for drought studies. The MSW, which integrates diverse sources of data, including             
rain gauges and satellites, is a valuable dataset and represents a clear improvement             
compared with the E2O in both absolute and relative (drought) terms (see the electronic              
supplementary material). However, we should not forget that the MSW uses rain gauge data              
and, thus, is probably better in data rich countries, such as Spain, than in countries where                
observations are inexistent or unavailable. 
 
RCMs provide a good representation of meteorological drought. The results show that they             
are capable of reproducing the same drought spells as those detected by their driving data               
and the reference data. However, they differ in terms of an event’s duration, severity, and               
area, as expected. We have identified that RCMs improve drought representation with            
respect to the driving data in several aspects. For instance, the temporal evolution of the               
SPI-12 shows that the severity of some of the drought spells is closer to that of the reference                  
data. In addition, they do not reproduce the spurious trend identified in the driving data,               
which could lead to a misrepresentation of the phenomenon. Finally, a temporal correlation             
analysis shows that drought representation is improved over the northeastern region of the             
Iberian Peninsula, which is a known limitation of global analysis across Spain. These results              
are consistent with previous studies showing that RCMs provide a suitable representation of             
drought using drought indices across Spain (Barrera-Escoda et al., 2013; Maule et al., 2013;              
García-Valdecasas Ojeda et al., 2017). 
 
However, our study shows that our implementation of state-of-the-art LSMs in Spain is not              
yet ready to provide reliable information to water managers. We compared the differences             
among the SSMI used in several simulations, concluding that changing the forcing dataset             
and keeping the same model has a larger impact on the results than the opposite, which                
implies that the forcing dataset plays an important role. These comparisons mixed both the              
spatial and temporal components of the error, but it is the spatial component that amplifies               
the divergences among the simulations, as there are large differences between how, for             
instance, E2O and SFR represent the spatial structures of drought. 
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The results also show that model formulations have a strong influence on the temporal scale               
nx at which the precipitation variability (SPI) affects the soil moisture variability (SSMI). This              
is an important issue because it implies that since there is no ground truth for comparison,                
we cannot trust land-surface models to understand how drought propagates to soil moisture.             
The spatial structures of nx are overly homogeneous in space in the 3L and DIF. Even                
though we do not know what the reality is, intuition tells us that there should be differences                 
across various hydrological settings and climates. LHD, on the contrary, presents a rich             
spatial variability of nx , which shows the important effects that groundwater lateral flows and               
the water table have on soil moisture dynamics. This is especially important in semiarid              
areas, where the interaction between the water table and soil moisture sustains vegetation             
during the dry season and drought periods. Furthermore, the differences among models can             
be amplified by the choice of the forcing dataset, as the results for the LHD have shown that                  
changing the forcing dataset alters how precipitation variability propagates to soil moisture.            
As a consequence, model formulation is the key factor explaining the uncertainty of drought              
propagation to soil moisture, while forcing explains most of the divergence when            
representing the spatial structures of drought, as global products are not able to reproduce              
the finer scale spatial details of the precipitation pattern. 
 
Concerning RCMs, the results regarding soil moisture and hydrological drought          
representation show differences when RCMs are compared among themselves and to the            
reference data. The analyses are carried out using the RMSD and Pearson correlations, and              
the observed uncertainty corresponds, in most cases, to a change in the drought category              
(according to the SPI drought classification) of RCMs with respect to the reference data. .               
LSM offline simulations are used as reference datasets for soil moisture drought analysis             
due to the lack of observations, which is not ideal. There is not enough in-situ data available                 
for such a study. Remote sensing products could also be an option, but there are certain                
limitations that should be taken into account, for example, uncertainty sources, gaps in the              
data, and short time series (AghaKouchak et al., 2015). Escorihuela and Quintana-Seguí            
(2016) showed that different satellite products behave differently across a region           
representative of Mediterranean landscapes (Catalonia in the northeast Iberian Peninsula).          
Therefore, using these products would add more uncertainty to the study. In addition, the              
retrieved soil moisture data correspond to surface soil moisture, and, in this study, we              
considered root zone soil moisture. 
 
The structural differences among models affect their ability to simulate the SSI; thus, model              
formulation is the most important uncertainty source in the SSI results. One of the interesting               
results in drought propagation is that, compared with the observations at the near natural              
flow stations, the correlation between the SPI-nx and SSI is generally too high for the SMP,                
DIF and 3L. This means that these models miss important processes affecting the SSI. As               
the model structure is the most important source of uncertainty, it is meaningful to use global                
forcing datasets for local (national or large basin scale) streamflow drought studies.            
Concerning RCMs, a key result of the study is the relevance of the models’ physics, which                
prevails over the driving data. This is shown in the soil moisture and hydrological drought               
representation evaluation as well as in the analyses of drought propagation. In the latter              
case, the model’s structure influences the temporal scale at which the variability in             
precipitation affects that of soil moisture and streamflow. 
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One of the main results of this study is that the land-surface models used in this study must                  
be improved if they are going to be used to monitor and understand drought processes in                
Spain. This is mainly due to the large uncertainty in the simulation of soil-moisture and the                
needed improvement in groundwater processes and their interactions with soil and rivers.            
We believe that similar results would be obtained if more models were introduced in the               
comparison, as the main causes of the detected problems are shared by many LSMs.              
However, this should be the subject of a larger future study. Therefore, future work in               
improving offline LSMs is necessary not only to provide interesting data for water             
management (planning and monitoring) but to prepare for the next generation of            
earth-system models. In this respect, the methodology used in this study, which compares             
different kinds of drought and its propagation, is useful to reveal structural differences and              
problems in model simulations, providing new perspectives that go beyond the validation of             
the absolute values of the studied variables. 
 

7.Conclusions and perspectives 
Land-surface models are tools that have the potential to provide valuable information to             
water managers. Simulated standardized soil moisture is especially interesting as a drought            
index because soil moisture integrates the effects of effective precipitation and actual            
evapotranspiration. LSMs can provide estimations of this index, compensating for the lack of             
observations. Also, in the context of climate change, we need to know the future evolution of                
drought. To this aim, we may use RCMs, but we need to know how these behave in terms of                   
drought, which is what we have evaluated in this study. 
 
However, this study shows that the uncertainties due to model formulation remain an             
important issue in current generation large-scale hydrological simulations based on          
landsurface models. This is true for the results of both the standardized soil moisture (SSMI)               
and streamflow (SSI), for offline LSMs and for RCMs. 
 
In the case of soil moisture, the differences among LSM simulations are quite large both in                
terms of the RMSD and correlation. Furthermore, the differences in how drought propagates             
to soil moisture are also large and determined by the model structure. The problem is difficult                
to solve because there is no Spanish dataset with in situ root-zone soil moisture data that                
could be used to guide model improvement and, thus, models cannot be effectively             
constrained and validated, even though some good networks exist: REMEDHUS (https://           
ismn.geo.tuwien.ac.at/networks/remedhus/) and the Valencia Anchor Station (Coll Pajaron´        
2017). 
 
For streamflow, the quality of the simulated SSI by LSMs is not as good, as it would                 
otherwise be desirable. Furthermore, the LSMs are not able to correctly simulate the scales              
of drought propagation, and they miss processes that affect the SSI, as the correlations              
between precipitation (SPI-nx ) and streamflow (SSI) are too high (this is also true for the                
SMP). 
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The forcing datasets do have an impact on the uncertainty of the results but, in general, this                 
impact is not as large as the impact of uncertainty due to model formulation. The MSW,                
which includes satellite precipitation data, represents a large improvement compared with           
E2O. 
 
It is concluded that RCMs provide added value to meteorological drought representation,            
minimizing possible error sources from the driving data and ameliorating its characterization            
over areas that are known to pose certain problems to global driving data products.              
However, soil moisture and hydrological drought representation by RCMs show          
uncertainties. This is mainly due to the relevance of model physics and its prevalence to the                
driving data. Similar results were obtained for the propagation processes, in which model             
structure was found to influence the dynamics of drought propagation, showing different            
temporal scales depending on how precipitation variability is formulated within the model. 
 
LSMs and RCMs are a suitable tool for meteorological drought studies but should be used               
cautiously for soil moisture and hydrological drought analyses. Improvements regarding soil           
moisture modelling and streamflow-related processes (natural and anthropic) should be          
performed to better characterize drought events as well as their propagation 
 
The methodologies used to study drought propagation are not only useful to understand this              
process but also to explore structural problems in models and guide model improvement. In              
the future, it is necessary to continue improving the current hydrological implementation of             
LSMs in Spain (SASER and LEAFHYDRO). The assimilation of the remote sensing of             
surface soil moisture can be a useful way to improve how models simulate root-zone soil               
moisture. Concerning streamflow, the main physical processes to be improved are those            
related to groundwater and lateral flows, which need to be introduced in SASER (3L and               
DIF) and improved in LEAFHYDRO. Finally, it would also be necessary to introduce             
human-related processes in models, such as irrigation and dam operation, in order to be              
able to compare them to reality and study the direct impacts of humans on drought. 
 
In future studies, in the context of HUMID project, we will explore aspects related to human                
processes, which we did not cover in this report. Also, being drought a multivariate physical               
process, we will study the role of evapotranspiration in drought, and its interaction with other               
variables, such as precipitation and soil moisture, during drought events. 
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